import inspect
from functools import wraps
import sentry_sdk
from sentry_sdk.ai.monitoring import record_token_usage
from sentry_sdk.ai.utils import set_data_normalized
from sentry_sdk.consts import OP, SPANDATA
from sentry_sdk.integrations import DidNotEnable, Integration
from sentry_sdk.scope import should_send_default_pii
from sentry_sdk.tracing_utils import set_span_errored
from sentry_sdk.utils import (
capture_internal_exceptions,
event_from_exception,
)
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from typing import Any, Callable, Iterable
try:
import huggingface_hub.inference._client
except ImportError:
raise DidNotEnable("Huggingface not installed")
class HuggingfaceHubIntegration(Integration):
identifier = "huggingface_hub"
origin = f"auto.ai.{identifier}"
def __init__(self, include_prompts=True):
# type: (HuggingfaceHubIntegration, bool) -> None
self.include_prompts = include_prompts
@staticmethod
def setup_once():
# type: () -> None
# Other tasks that can be called: https://huggingface.co/docs/huggingface_hub/guides/inference#supported-providers-and-tasks
huggingface_hub.inference._client.InferenceClient.text_generation = (
_wrap_huggingface_task(
huggingface_hub.inference._client.InferenceClient.text_generation,
OP.GEN_AI_GENERATE_TEXT,
)
)
huggingface_hub.inference._client.InferenceClient.chat_completion = (
_wrap_huggingface_task(
huggingface_hub.inference._client.InferenceClient.chat_completion,
OP.GEN_AI_CHAT,
)
)
def _capture_exception(exc):
# type: (Any) -> None
set_span_errored()
event, hint = event_from_exception(
exc,
client_options=sentry_sdk.get_client().options,
mechanism={"type": "huggingface_hub", "handled": False},
)
sentry_sdk.capture_event(event, hint=hint)
def _wrap_huggingface_task(f, op):
# type: (Callable[..., Any], str) -> Callable[..., Any]
@wraps(f)
def new_huggingface_task(*args, **kwargs):
# type: (*Any, **Any) -> Any
integration = sentry_sdk.get_client().get_integration(HuggingfaceHubIntegration)
if integration is None:
return f(*args, **kwargs)
prompt = None
if "prompt" in kwargs:
prompt = kwargs["prompt"]
elif "messages" in kwargs:
prompt = kwargs["messages"]
elif len(args) >= 2:
if isinstance(args[1], str) or isinstance(args[1], list):
prompt = args[1]
if prompt is None:
# invalid call, dont instrument, let it return error
return f(*args, **kwargs)
client = args[0]
model = client.model or kwargs.get("model") or ""
operation_name = op.split(".")[-1]
span = sentry_sdk.start_span(
op=op,
name=f"{operation_name} {model}",
origin=HuggingfaceHubIntegration.origin,
)
span.__enter__()
span.set_data(SPANDATA.GEN_AI_OPERATION_NAME, operation_name)
if model:
span.set_data(SPANDATA.GEN_AI_REQUEST_MODEL, model)
# Input attributes
if should_send_default_pii() and integration.include_prompts:
set_data_normalized(
span, SPANDATA.GEN_AI_REQUEST_MESSAGES, prompt, unpack=False
)
attribute_mapping = {
"tools": SPANDATA.GEN_AI_REQUEST_AVAILABLE_TOOLS,
"frequency_penalty": SPANDATA.GEN_AI_REQUEST_FREQUENCY_PENALTY,
"max_tokens": SPANDATA.GEN_AI_REQUEST_MAX_TOKENS,
"presence_penalty": SPANDATA.GEN_AI_REQUEST_PRESENCE_PENALTY,
"temperature": SPANDATA.GEN_AI_REQUEST_TEMPERATURE,
"top_p": SPANDATA.GEN_AI_REQUEST_TOP_P,
"top_k": SPANDATA.GEN_AI_REQUEST_TOP_K,
"stream": SPANDATA.GEN_AI_RESPONSE_STREAMING,
}
for attribute, span_attribute in attribute_mapping.items():
value = kwargs.get(attribute, None)
if value is not None:
if isinstance(value, (int, float, bool, str)):
span.set_data(span_attribute, value)
else:
set_data_normalized(span, span_attribute, value, unpack=False)
# LLM Execution
try:
res = f(*args, **kwargs)
except Exception as e:
_capture_exception(e)
span.__exit__(None, None, None)
raise e from None
# Output attributes
finish_reason = None
response_model = None
response_text_buffer: list[str] = []
tokens_used = 0
tool_calls = None
usage = None
with capture_internal_exceptions():
if isinstance(res, str) and res is not None:
response_text_buffer.append(res)
if hasattr(res, "generated_text") and res.generated_text is not None:
response_text_buffer.append(res.generated_text)
if hasattr(res, "model") and res.model is not None:
response_model = res.model
if hasattr(res, "details") and hasattr(res.details, "finish_reason"):
finish_reason = res.details.finish_reason
if (
hasattr(res, "details")
and hasattr(res.details, "generated_tokens")
and res.details.generated_tokens is not None
):
tokens_used = res.details.generated_tokens
if hasattr(res, "usage") and res.usage is not None:
usage = res.usage
if hasattr(res, "choices") and res.choices is not None:
for choice in res.choices:
if hasattr(choice, "finish_reason"):
finish_reason = choice.finish_reason
if hasattr(choice, "message") and hasattr(
choice.message, "tool_calls"
):
tool_calls = choice.message.tool_calls
if (
hasattr(choice, "message")
and hasattr(choice.message, "content")
and choice.message.content is not None
):
response_text_buffer.append(choice.message.content)
if response_model is not None:
span.set_data(SPANDATA.GEN_AI_RESPONSE_MODEL, response_model)
if finish_reason is not None:
set_data_normalized(
span,
SPANDATA.GEN_AI_RESPONSE_FINISH_REASONS,
finish_reason,
)
if should_send_default_pii() and integration.include_prompts:
if tool_calls is not None and len(tool_calls) > 0:
set_data_normalized(
span,
SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS,
tool_calls,
unpack=False,
)
if len(response_text_buffer) > 0:
text_response = "".join(response_text_buffer)
if text_response:
set_data_normalized(
span,
SPANDATA.GEN_AI_RESPONSE_TEXT,
text_response,
)
if usage is not None:
record_token_usage(
span,
input_tokens=usage.prompt_tokens,
output_tokens=usage.completion_tokens,
total_tokens=usage.total_tokens,
)
elif tokens_used > 0:
record_token_usage(
span,
total_tokens=tokens_used,
)
# If the response is not a generator (meaning a streaming response)
# we are done and can return the response
if not inspect.isgenerator(res):
span.__exit__(None, None, None)
return res
if kwargs.get("details", False):
# text-generation stream output
def new_details_iterator():
# type: () -> Iterable[Any]
finish_reason = None
response_text_buffer: list[str] = []
tokens_used = 0
with capture_internal_exceptions():
for chunk in res:
if (
hasattr(chunk, "token")
and hasattr(chunk.token, "text")
and chunk.token.text is not None
):
response_text_buffer.append(chunk.token.text)
if hasattr(chunk, "details") and hasattr(
chunk.details, "finish_reason"
):
finish_reason = chunk.details.finish_reason
if (
hasattr(chunk, "details")
and hasattr(chunk.details, "generated_tokens")
and chunk.details.generated_tokens is not None
):
tokens_used = chunk.details.generated_tokens
yield chunk
if finish_reason is not None:
set_data_normalized(
span,
SPANDATA.GEN_AI_RESPONSE_FINISH_REASONS,
finish_reason,
)
if should_send_default_pii() and integration.include_prompts:
if len(response_text_buffer) > 0:
text_response = "".join(response_text_buffer)
if text_response:
set_data_normalized(
span,
SPANDATA.GEN_AI_RESPONSE_TEXT,
text_response,
)
if tokens_used > 0:
record_token_usage(
span,
total_tokens=tokens_used,
)
span.__exit__(None, None, None)
return new_details_iterator()
else:
# chat-completion stream output
def new_iterator():
# type: () -> Iterable[str]
finish_reason = None
response_model = None
response_text_buffer: list[str] = []
tool_calls = None
usage = None
with capture_internal_exceptions():
for chunk in res:
if hasattr(chunk, "model") and chunk.model is not None:
response_model = chunk.model
if hasattr(chunk, "usage") and chunk.usage is not None:
usage = chunk.usage
if isinstance(chunk, str):
if chunk is not None:
response_text_buffer.append(chunk)
if hasattr(chunk, "choices") and chunk.choices is not None:
for choice in chunk.choices:
if (
hasattr(choice, "delta")
and hasattr(choice.delta, "content")
and choice.delta.content is not None
):
response_text_buffer.append(
choice.delta.content
)
if (
hasattr(choice, "finish_reason")
and choice.finish_reason is not None
):
finish_reason = choice.finish_reason
if (
hasattr(choice, "delta")
and hasattr(choice.delta, "tool_calls")
and choice.delta.tool_calls is not None
):
tool_calls = choice.delta.tool_calls
yield chunk
if response_model is not None:
span.set_data(
SPANDATA.GEN_AI_RESPONSE_MODEL, response_model
)
if finish_reason is not None:
set_data_normalized(
span,
SPANDATA.GEN_AI_RESPONSE_FINISH_REASONS,
finish_reason,
)
if should_send_default_pii() and integration.include_prompts:
if tool_calls is not None and len(tool_calls) > 0:
set_data_normalized(
span,
SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS,
tool_calls,
unpack=False,
)
if len(response_text_buffer) > 0:
text_response = "".join(response_text_buffer)
if text_response:
set_data_normalized(
span,
SPANDATA.GEN_AI_RESPONSE_TEXT,
text_response,
)
if usage is not None:
record_token_usage(
span,
input_tokens=usage.prompt_tokens,
output_tokens=usage.completion_tokens,
total_tokens=usage.total_tokens,
)
span.__exit__(None, None, None)
return new_iterator()
return new_huggingface_task
|